Abstract:Graph Domain Adaptation (GDA) typically uses adversarial learning to align graph embeddings in Euclidean space. However, this paradigm suffers from two critical challenges: Structural Degeneration, where hierarchical and semantic representations are entangled, and Optimization Instability, which arises from oscillatory dynamics of minimax adversarial training. To tackle these issues, we propose DisRFM, a geometry-aware GDA framework that unifies Riemannian embedding and flow-based transport. First, to overcome structural degeneration, we embed graphs into a Riemannian manifold. By adopting polar coordinates, we explicitly disentangle structure (radius) from semantics (angle). Then, we enforce topology preservation through radial Wasserstein alignment and semantic discrimination via angular clustering, thereby preventing feature entanglement and collapse. Second, we address the instability of adversarial alignment by using Riemannian flow matching. This method learns a smooth vector field to guide source features toward the target along geodesic paths, guaranteeing stable convergence. The geometric constraints further guide the flow to maintain the disentangled structure during transport. Theoretically, we prove the asymptotic stability of the flow matching and derive a tighter bound for the target risk. Extensive experiments demonstrate that DisRFM consistently outperforms state-of-the-art methods.
Abstract:Compressing long chains of thought (CoT) into compact latent tokens is crucial for efficient reasoning with large language models (LLMs). Recent studies employ autoencoders to achieve this by reconstructing textual CoT from latent tokens, thus encoding CoT semantics. However, treating textual CoT as the reconstruction target forces latent tokens to preserve surface-level linguistic features (e.g., word choice and syntax), introducing a strong linguistic inductive bias that prioritizes linguistic form over reasoning structure and limits logical abstraction. Thus, we propose ImgCoT that replaces the reconstruction target from textual CoT to the visual CoT obtained by rendering CoT into images. This substitutes linguistic bias with spatial inductive bias, i.e., a tendency to model spatial layouts of the reasoning steps in visual CoT, enabling latent tokens to better capture global reasoning structure. Moreover, although visual latent tokens encode abstract reasoning structure, they may blur reasoning details. We thus propose a loose ImgCoT, a hybrid reasoning that augments visual latent tokens with a few key textual reasoning steps, selected based on low token log-likelihood. This design allows LLMs to retain both global reasoning structure and fine-grained reasoning details with fewer tokens than the complete CoT. Extensive experiments across multiple datasets and LLMs demonstrate the effectiveness of the two versions of ImgCoT.
Abstract:Graph Neural Networks frequently exhibit significant performance degradation in the out-of-distribution test scenario. While test-time training (TTT) offers a promising solution, existing Parameter Finetuning (PaFT) paradigm suffer from catastrophic forgetting, hindering their real-world applicability. We propose TTReFT, a novel Test-Time Representation FineTuning framework that transitions the adaptation target from model parameters to latent representations. Specifically, TTReFT achieves this through three key innovations: (1) uncertainty-guided node selection for specific interventions, (2) low-rank representation interventions that preserve pre-trained knowledge, and (3) an intervention-aware masked autoencoder that dynamically adjust masking strategy to accommodate the node selection scheme. Theoretically, we establish guarantees for TTReFT in OOD settings. Empirically, extensive experiments across five benchmark datasets demonstrate that TTReFT achieves consistent and superior performance. Our work establishes representation finetuning as a new paradigm for graph TTT, offering both theoretical grounding and immediate practical utility for real-world deployment.
Abstract:Temporal Graph Clustering (TGC) is a new task with little attention, focusing on node clustering in temporal graphs. Compared with existing static graph clustering, it can find the balance between time requirement and space requirement (Time-Space Balance) through the interaction sequence-based batch-processing pattern. However, there are two major challenges that hinder the development of TGC, i.e., inapplicable clustering techniques and inapplicable datasets. To address these challenges, we propose a comprehensive benchmark, called BenchTGC. Specially, we design a BenchTGC Framework to illustrate the paradigm of temporal graph clustering and improve existing clustering techniques to fit temporal graphs. In addition, we also discuss problems with public temporal graph datasets and develop multiple datasets suitable for TGC task, called BenchTGC Datasets. According to extensive experiments, we not only verify the advantages of BenchTGC, but also demonstrate the necessity and importance of TGC task. We wish to point out that the dynamically changing and complex scenarios in real world are the foundation of temporal graph clustering. The code and data is available at: https://github.com/MGitHubL/BenchTGC.
Abstract:Hyperspectral images with high spectral resolution provide new insights into recognizing subtle differences in similar substances. However, object detection in hyperspectral images faces significant challenges in intra- and inter-class similarity due to the spatial differences in hyperspectral inter-bands and unavoidable interferences, e.g., sensor noises and illumination. To alleviate the hyperspectral inter-bands inconsistencies and redundancy, we propose a novel network termed \textbf{S}pectral \textbf{D}iscrepancy and \textbf{C}ross-\textbf{M}odal semantic consistency learning (SDCM), which facilitates the extraction of consistent information across a wide range of hyperspectral bands while utilizing the spectral dimension to pinpoint regions of interest. Specifically, we leverage a semantic consistency learning (SCL) module that utilizes inter-band contextual cues to diminish the heterogeneity of information among bands, yielding highly coherent spectral dimension representations. On the other hand, we incorporate a spectral gated generator (SGG) into the framework that filters out the redundant data inherent in hyperspectral information based on the importance of the bands. Then, we design the spectral discrepancy aware (SDA) module to enrich the semantic representation of high-level information by extracting pixel-level spectral features. Extensive experiments on two hyperspectral datasets demonstrate that our proposed method achieves state-of-the-art performance when compared with other ones.
Abstract:Clustering is a fundamental task in unsupervised learning, but most existing methods heavily rely on hyperparameters such as the number of clusters or other sensitive settings, limiting their applicability in real-world scenarios. To address this long-standing challenge, we propose a novel and fully parameter-free clustering framework via Self-supervised Consensus Maximization, named SCMax. Our framework performs hierarchical agglomerative clustering and cluster evaluation in a single, integrated process. At each step of agglomeration, it creates a new, structure-aware data representation through a self-supervised learning task guided by the current clustering structure. We then introduce a nearest neighbor consensus score, which measures the agreement between the nearest neighbor-based merge decisions suggested by the original representation and the self-supervised one. The moment at which consensus maximization occurs can serve as a criterion for determining the optimal number of clusters. Extensive experiments on multiple datasets demonstrate that the proposed framework outperforms existing clustering approaches designed for scenarios with an unknown number of clusters.
Abstract:Kernel power $k$-means (KPKM) leverages a family of means to mitigate local minima issues in kernel $k$-means. However, KPKM faces two key limitations: (1) the computational burden of the full kernel matrix restricts its use on extensive data, and (2) the lack of authentic centroid-sample assignment learning reduces its noise robustness. To overcome these challenges, we propose RFF-KPKM, introducing the first approximation theory for applying random Fourier features (RFF) to KPKM. RFF-KPKM employs RFF to generate efficient, low-dimensional feature maps, bypassing the need for the whole kernel matrix. Crucially, we are the first to establish strong theoretical guarantees for this combination: (1) an excess risk bound of $\mathcal{O}(\sqrt{k^3/n})$, (2) strong consistency with membership values, and (3) a $(1+\varepsilon)$ relative error bound achievable using the RFF of dimension $\mathrm{poly}(\varepsilon^{-1}\log k)$. Furthermore, to improve robustness and the ability to learn multiple kernels, we propose IP-RFF-MKPKM, an improved possibilistic RFF-based multiple kernel power $k$-means. IP-RFF-MKPKM ensures the scalability of MKPKM via RFF and refines cluster assignments by combining the merits of the possibilistic membership and fuzzy membership. Experiments on large-scale datasets demonstrate the superior efficiency and clustering accuracy of the proposed methods compared to the state-of-the-art alternatives.
Abstract:Multi-view clustering (MVC) aims to explore the common clustering structure across multiple views. Many existing MVC methods heavily rely on the assumption of view consistency, where alignments for corresponding samples across different views are ordered in advance. However, real-world scenarios often present a challenge as only partial data is consistently aligned across different views, restricting the overall clustering performance. In this work, we consider the model performance decreasing phenomenon caused by data order shift (i.e., from fully to partially aligned) as a generalized multi-view clustering problem. To tackle this problem, we design a causal multi-view clustering network, termed CauMVC. We adopt a causal modeling approach to understand multi-view clustering procedure. To be specific, we formulate the partially aligned data as an intervention and multi-view clustering with partially aligned data as an post-intervention inference. However, obtaining invariant features directly can be challenging. Thus, we design a Variational Auto-Encoder for causal learning by incorporating an encoder from existing information to estimate the invariant features. Moreover, a decoder is designed to perform the post-intervention inference. Lastly, we design a contrastive regularizer to capture sample correlations. To the best of our knowledge, this paper is the first work to deal generalized multi-view clustering via causal learning. Empirical experiments on both fully and partially aligned data illustrate the strong generalization and effectiveness of CauMVC.
Abstract:In this paper, we address the problem of novel class discovery (NCD), which aims to cluster novel classes by leveraging knowledge from disjoint known classes. While recent advances have made significant progress in this area, existing NCD methods face two major limitations. First, they primarily focus on single-view data (e.g., images), overlooking the increasingly common multi-view data, such as multi-omics datasets used in disease diagnosis. Second, their reliance on pseudo-labels to supervise novel class clustering often results in unstable performance, as pseudo-label quality is highly sensitive to factors such as data noise and feature dimensionality. To address these challenges, we propose a novel framework named Intra-view and Inter-view Correlation Guided Multi-view Novel Class Discovery (IICMVNCD), which is the first attempt to explore NCD in multi-view setting so far. Specifically, at the intra-view level, leveraging the distributional similarity between known and novel classes, we employ matrix factorization to decompose features into view-specific shared base matrices and factor matrices. The base matrices capture distributional consistency among the two datasets, while the factor matrices model pairwise relationships between samples. At the inter-view level, we utilize view relationships among known classes to guide the clustering of novel classes. This includes generating predicted labels through the weighted fusion of factor matrices and dynamically adjusting view weights of known classes based on the supervision loss, which are then transferred to novel class learning. Experimental results validate the effectiveness of our proposed approach.




Abstract:Leveraging the powerful representation learning capabilities, deep multi-view clustering methods have demonstrated reliable performance by effectively integrating multi-source information from diverse views in recent years. Most existing methods rely on the assumption of clean views. However, noise is pervasive in real-world scenarios, leading to a significant degradation in performance. To tackle this problem, we propose a novel multi-view clustering framework for the automatic identification and rectification of noisy data, termed AIRMVC. Specifically, we reformulate noisy identification as an anomaly identification problem using GMM. We then design a hybrid rectification strategy to mitigate the adverse effects of noisy data based on the identification results. Furthermore, we introduce a noise-robust contrastive mechanism to generate reliable representations. Additionally, we provide a theoretical proof demonstrating that these representations can discard noisy information, thereby improving the performance of downstream tasks. Extensive experiments on six benchmark datasets demonstrate that AIRMVC outperforms state-of-the-art algorithms in terms of robustness in noisy scenarios. The code of AIRMVC are available at https://github.com/xihongyang1999/AIRMVC on Github.